AR Protein in Prostate Cancer Detected with New Imaging Technique

AR Protein in Prostate Cancer Detected with New Imaging Technique
Researchers have developed a new imaging technique that can identify variants of the androgen receptors that do not respond to current androgen-deprivation therapies. The discovery could lead to better clinical management of patients with castration-resistant prostate cancer (CRPC). Findings from the study, "An imaging agent to detect androgen receptor and its active splice variants in prostate cancer," were published in JCI Insight. Although androgen deprivation therapy often improves the outcome of prostate cancer patients, tumor cells eventually develop resistance to the therapy and evolve into castration-resistant prostate cancer. Tumor cells still depend on an active androgen receptor, but no longer respond to hormone therapies. One mechanism by which cells acquire resistance is through the presence of active variants of the androgen receptor that do not include the portion of the receptor to which androgens and anti-androgen drugs bind. Because all current hormone therapies target the domain of the androgen receptor, or directly reduce androgen levels, the therapies do not work for patients with the variants. This is particularly important because patients with specific variants, such as V7, are known to respond to taxanes. Knowing whether a patient has a specific variant may prevent patients from receiving futile, high-cost treatments, such as enzalutamide (Xtandi, $7,450 a month) and abiterone (Zytiga, $5,000 a month), and more personalized treatments. Researchers led by Marianna Sadar developed new imaging compounds
Subscribe or to access all post and page content.